Welcome from the

Department of Mathematics
and Physics at the
University of New Haven

Matrix Braids

Joseph Kolibal

The University of New Haven

October, 192017

Abstract

Braiding matrices arise as a subtopic of the the Yang-Baxter equation, which has been studied extensively due to application in numerous fields of mathematics and physics. We connect these to a simplified matrix representation and focus on obtaining solutions to matrix braids by considering special matrices where solutions are more easily found. Finally, we suggest a fixed point iteration algorithm to determine the braid complement of a given matrix, if it exists.

- We analyze the Yang-Baxter equation specialized to matrices $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}, B: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$, having the following form

$$
\begin{equation*}
A B A=B A B . \tag{1}
\end{equation*}
$$

- We seek to characterize solutions of (1), including finding the necessary and if possible sufficient conditions under which distinct matrices A and B satisfy (1).
- We analyze the Yang-Baxter equation specialized to matrices $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}, B: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$, having the following form

$$
\begin{equation*}
A B A=B A B \tag{1}
\end{equation*}
$$

- We seek to characterize solutions of (1), including finding the necessary and if possible sufficient conditions under which distinct matrices A and B satisfy (1).
- In that regard, the approach is not too dissimilar to analyzing the structure of $A B=B A$, i.e., determining when two distinct matrices commute. ${ }^{1}$

[^0]- We analyze the Yang-Baxter equation specialized to matrices $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}, B: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$, having the following form

$$
\begin{equation*}
A B A=B A B \tag{1}
\end{equation*}
$$

- We seek to characterize solutions of (1), including finding the necessary and if possible sufficient conditions under which distinct matrices A and B satisfy (1).
- In that regard, the approach is not too dissimilar to analyzing the structure of $A B=B A$, i.e., determining when two distinct matrices commute. ${ }^{1}$

In that sense it seems appropriate to coin the usage that two distinct matrices form a braid, or more simply braid if they satisfy (1).

[^1]- An obvious necessary condition to have braiding matrices, i.e., to satisfy (1), is that

$$
\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B}) \operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{B}) \operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})
$$

- An obvious necessary condition to have braiding matrices, i.e., to satisfy (1), is that

$$
\begin{aligned}
\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(A)= & \operatorname{det}(B) \operatorname{det}(A) \operatorname{det}(B) \\
& \Longrightarrow \operatorname{det}(A)=\operatorname{det}(B) \text { if } A, B \text { nonsingular . }
\end{aligned}
$$

- An obvious necessary condition to have braiding matrices, i.e., to satisfy (1), is that

```
det}(\boldsymbol{A})\operatorname{det}(\boldsymbol{B})\operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{B})\operatorname{det}(\boldsymbol{A})\operatorname{det}(\boldsymbol{B}
    \Longrightarrow \operatorname { d e t } ( A ) = \operatorname { d e t } ( B ) \text { if } A , B \text { nonsingular .}
```

- Since the determinant of a matrix is equal to the product of the eigenvalues of the matrix, we have

$$
\prod_{i} \lambda_{i}(A)=\prod_{j} \lambda_{j}(B)
$$

where λ_{i} and λ_{j} are all the eigenvalues of A and B, including multiplicities.

- An obvious necessary condition to have braiding matrices, i.e., to satisfy (1), is that

```
det}(\boldsymbol{A})\operatorname{det}(\boldsymbol{B})\operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{B})\operatorname{det}(\boldsymbol{A})\operatorname{det}(\boldsymbol{B}
    \Longrightarrow \operatorname { d e t } ( A ) = \operatorname { d e t } ( B ) \text { if } A , B \text { nonsingular .}
```

- Since the determinant of a matrix is equal to the product of the eigenvalues of the matrix, we have

$$
\prod_{i} \lambda_{i}(A)=\prod_{j} \lambda_{j}(B),
$$

where λ_{i} and λ_{j} are all the eigenvalues of A and B, including multiplicities.

Not much information if A or B are singular.

- We can write the brading matrices in CFE form as

$$
\begin{equation*}
X A=B X, \tag{2}
\end{equation*}
$$

where $X=A B$.

- We can write the brading matrices in CFE form as

$$
\begin{equation*}
X A=B X, \tag{2}
\end{equation*}
$$

where $X=A B$.

- Adding A to both sides of (2), we obtain $(X+I) A=B X+A$.
- We can write the brading matrices in CFE form as

$$
\begin{equation*}
X A=B X, \tag{2}
\end{equation*}
$$

where $X=A B$.

- Adding A to both sides of (2), we obtain $(X+I) A=B X+A$.
- Solving for A on the left side of the equation yields our fixed point iteration method

$$
\begin{equation*}
A=(X+I)^{-1}(B X+A) . \tag{3}
\end{equation*}
$$

Must ensure that ($X+I$) remains invertible during the iteration.

- We can write the brading matrices in CFE form as

$$
\begin{equation*}
X A=B X, \tag{2}
\end{equation*}
$$

where $X=A B$.

- Adding A to both sides of (2), we obtain $(X+I) A=B X+A$.
- Solving for A on the left side of the equation yields our fixed point iteration method

$$
\begin{equation*}
A=(X+I)^{-1}(B X+A) . \tag{3}
\end{equation*}
$$

Must ensure that ($X+I$) remains invertible during the iteration.

- We could rewrite (3) as

$$
\begin{equation*}
A=(X+c I)^{-1}(B X+c A) \tag{4}
\end{equation*}
$$

and for large enough values of c, the diagonal dominance of $(X+c I)$ will guarantee invertibility.

- Example of using a table and turning of the background.

n	V_{n} / c_{n}	V_{n} / C_{n}	S_{n}	Comments
1	2.0000	1.000000	2.0000	Since $S_{1}=\frac{2 \pi^{1 / 2}}{\Gamma(1 / 2)} r^{1-1}$ and $\Gamma(1 / 2)=\pi^{1 / 2}$
2	3.1416	0.785398	6.2832	
3	4.1888	0.523599	12.566	
4	4.9348	0.308425	19.739	
5	5.2638	0.164493	26.319	
6	5.1677	0.080746	31.006	
7	4.7248	0.036912	33.074	
8	4.0587	0.015854	32.497	
9	3.2985	0.0064424	29.687	

- Example of using a table and turning of the background.

n	V_{n} / c_{n}	V_{n} / C_{n}	S_{n}	Comments
1	2.0000	1.000000	2.0000	Since $S_{1}=\frac{2 \pi^{1 / 2}}{\Gamma(1 / 2)} r^{1-1}$ and $\Gamma(1 / 2)=\pi^{1 / 2}$
2	3.1416	0.785398	6.2832	
3	4.1888	0.523599	12.566	
4	4.9348	0.308425	19.739	
5	5.2638	0.164493	26.319	
6	5.1677	0.080746	31.006	
7	4.7248	0.036912	33.074	
8	4.0587	0.015854	32.497	
9	3.2985	0.0064424	29.687	

- Example of using a table and turning of the background.

n	V_{n} / c_{n}	V_{n} / C_{n}	S_{n}	Comments
1	2.0000	1.000000	2.0000	Since $S_{1}=\frac{2 \pi^{1 / 2}}{\Gamma(1 / 2)} r^{1-1}$ and $\Gamma(1 / 2)=\pi^{1 / 2}$
2	3.1416	0.785398	6.2832	
3	4.1888	0.523599	12.566	
4	4.9348	0.308425	19.739	
5	5.2638	0.164493	26.319	Maximum
6	5.1677	0.080746	31.006	Holds the most n-cubes. 1
7	4.7248	0.036912	33.074	
8	4.0587	0.015854	32.497	
9	3.2985	0.0064424	29.687	

- Example of using a table and turning of the background.

n	V_{n} / c_{n}	V_{n} / C_{n}	S_{n}	Comments
1	2.0000	1.000000	2.0000	Since $S_{1}=\frac{2 \pi^{1 / 2}}{\Gamma(1 / 2)} r^{1-1}$ and $\Gamma(1 / 2)=\pi^{1 / 2}$
2	3.1416	0.785398	6.2832	
3	4.1888	0.523599	12.566	
4	4.9348	0.308425	19.739	
5	5.2638	0.164493	26.319	
6	5.1677	0.080746	31.006	
7	4.7248	0.036912	33.074	
8	4.0587	0.015854	32.497	
9	3.2985	0.0064424	29.687	

- Example of using a table and turning of the background.

n	V_{n} / c_{n}	V_{n} / C_{n}	S_{n}	Comments
1	2.0000	1.000000	2.0000	Since $S_{1}=\frac{2 \pi^{1 / 2}}{\Gamma(1 / 2)} r^{1-1}$ and $\Gamma(1 / 2)=\pi^{1 / 2}$
2	3.1416	0.785398	6.2832	
3	4.1888	0.523599	12.566	
4	4.9348	0.308425	19.739	
5	5.2638	0.164493	26.319	Maximum V_{n}. Holds the most n-cubes.
6	5.1677	0.080746	31.006	
7	4.7248	0.036912	33.074	Maximum S_{n} at $n=7.2577 \ldots .$.
8	4.0587	0.015854	32.497	
9	3.2985	0.0064424	29.687	

- Example of using a table and turning of the background.

n	V_{n} / c_{n}	V_{n} / C_{n}	S_{n}	Comments
1	2.0000	1.000000	2.0000	Since $S_{1}=\frac{2 \pi^{1 / 2}}{\Gamma(1 / 2)} r^{1-1}$ and $\Gamma(1 / 2)=\pi^{1 / 2}$
2	3.1416	0.785398	6.2832	
3	4.1888	0.523599	12.566	
4	4.9348	0.308425	19.739	
5	5.2638	0.164493	26.319	Maximum V_{n}. Holds the most n-cubes.
6	5.1677	0.080746	31.006	
7	4.7248	0.036912	33.074	Maximum S_{n} at $n=7.257 \ldots$.
8	4.0587	0.015854	32.497	
9	3.2985	0.0064424	29.687	

- Example of using a table and turning of the background.

n	V_{n} / c_{n}	V_{n} / C_{n}	S_{n}	Comments
1	2.0000	1.000000	2.0000	Since $S_{1}=\frac{2 \pi^{1 / 2}}{\Gamma(1 / 2)} r^{1-1}$ and $\Gamma(1 / 2)=\pi^{1 / 2}$
2	3.1416	0.785398	6.2832	
3	4.1888	0.523599	12.566	
4	4.9348	0.308425	19.739	
5	5.2638	0.164493	26.319	Maximum V_{n}. Holds the most n-cubes.
6	5.1677	0.080746	31.006	
7	4.7248	0.036912	33.074	Maximum S_{n} at $n=7.257 \ldots$
8	4.0587	0.015854	32.497	
9	3.2985	0.0064424	29.687	

Note that $V_{n} / C_{n} \rightarrow 0$, i.e., spheres are vanishingly small inside of cubes in \mathbb{R}^{n} for large n.

Figure: Plot of Gamma function, $\Gamma(x)$, showing factorials, $\Gamma(x)=(n-1)$! for $x=1,2, \ldots$.

```
begin{frame}
Ft{Elementary considerations}
\begin{itemize}
\item
An obvious necessary condition to have braiding matrices, i.e., to
satisfy (\ref{eq:first}), is that
\begin{equation*}
\begin{aligned}
\det(A)\\operatorname{det}(B)\\operatorname{det}(A)=& \det(B)\\operatorname{det}(A)\\operatorname{det}(B) \\ \pause
& \implies \det (A) = \det (B)\mbox{ if } A, B \mbox{ nonsingular}.
\end{aligned}
lend{equation*}
\pause
\item
Since the \Urlx{https://wiki2.org/en/Determinant+Brights}{determinant}
of a matrix is equal to the product of the
Jrlx{https://wiki2.org/en/Eigenvalues_andleigenvectors+Brights}{eigenvalues}
of the matrix, we have
%
Degin{equation*}
~prod_i{\lambda_{i}(A)} = \prod_j{\lambda_{j}(B)},
\end{equation*}
%
where $ \lambda_i$ and $ \lambda j$ are all the eigenvalues of $ A$ and $ B$,
including multiplicities.
\vspace{0.8em}
\pause
{\color{\quotecolor}
\begin{center}
Not much information if $ AS or $ B$ are singular.
\end{center}
}
\end{itemize}
lend{frame}
```


Elementary considerations

- An obvious necessary condition to have braiding matrices, i.e., to satisfy (6), is that

$$
\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(A) \operatorname{det}(B)
$$

$$
\Longrightarrow \operatorname{det}(A)=\operatorname{det}(B) \text { if } A, B \text { nonsingular. }
$$

- Since the determinant of a matrix is equal to the product of the eigenvalues of the matrix, we have

$$
\prod_{i} \lambda_{i}(A)=\prod_{j} \lambda_{j}(B)
$$

where λ_{i} and λ_{j} are all the eigenvalues of A and B, including multiplicities.

Not much information if A or B are singular.

We used Beamer, a version of LaTeX that is highly optimized to produce quality presentation slides. Interested? Consider MATH 2212 Software Tools for Math, along with some self-help research tools. Note that we can invoke actions, such as view the jpg file that is the background for this page.

[^2]The Department of Mathematics and Physics at The University of New Haven http://math.newhaven.edu

JKolibal@newhaven.edu

http://math.newhaven.edu/kolibal

[^0]: ${ }^{1}$ The physics preamble suggests the form $A B A=B A B$, but why not consider when $A A B=B A B$, or $B A A=B A B$, or ..., i.e., consider permutations of two matrices takesn three at a time. As an academic pursuit, we can consider the permutation products of n matrices taken p at a time, but we can also consider matrix multiplication schemes for public key encryption, e.g., the Simple Matrix Scheme. The simpler Hill cipher was the first attempt to do cryptography with matrices.

[^1]: ${ }^{1}$ The physics preamble suggests the form $A B A=B A B$, but why not consider when $A A B=B A B$, or $B A A=B A B$, or ..., i.e., consider permutations of two matrices takesn three at a time. As an academic pursuit, we can consider the permutation products of n matrices taken p at a time, but we can also consider matrix multiplication schemes for public key encryption, e.g., the Simple Matrix Scheme. The simpler Hill cipher was the first attempt to do cryptography with matrices.

[^2]: Back to Elementary Considerations, pg. 8

