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Synopsis Matrix Braids

Abstract
Braiding matrices arise as a subtopic of the the Yang-Baxter equation, which
has been studied extensively due to application in numerous fields of mathe-
matics and physics. We connect these to a simplified matrix representation
and focus on obtaining solutions to matrix braids by considering special ma-
trices where solutions are more easily found. Finally, we suggest a fixed
point iteration algorithm to determine the braid complement of a given matrix,
if it exists.
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Matrix form of YBE Matrix Braids

I We analyze the Yang-Baxter equation specialized to matrices
A : Cn −→ Cn, B : Cn −→ Cn, having the following form

ABA = BAB. (1)

I We seek to characterize solutions of (1), including finding the necessary
and if possible sufficient conditions under which distinct matrices A and B
satisfy (1).

I In that regard, the approach is not too dissimilar to analyzing the structure
of AB = BA, i.e., determining when two distinct matrices commute.1

In that sense it seems appropriate to coin the usage that two distinct matrices
form a braid, or more simply braid if they satisfy (1).

1 The physics preamble suggests the form ABA = BAB, but why not consider when AAB = BAB, or BAA = BAB, or
…, i.e., consider permutations of two matrices takesn three at a time. As an academic pursuit, we can consider
the permutation products of n matrices taken p at a time, but we can also consider matrix multiplication schemes
for public key encryption, e.g., the Simple Matrix Scheme. The simpler Hill cipher was the first attempt to do
cryptography with matrices.
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Elementary considerations Matrix Braids

I An obvious necessary condition to have braiding matrices, i.e., to satisfy
(1), is that

det(A)det(B)det(A) =det(B)det(A)det(B)
=⇒ det(A) = det(B) if A,B nonsingular .

I Since the determinant of a matrix is equal to the product of the
eigenvalues of the matrix, we have

∏
i

λi(A) = ∏
j

λ j(B),

where λi and λ j are all the eigenvalues of A and B, including multiplicities.

Not much information if A or B are singular.

How was this slide written?
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Iterative Solutions Matrix Braids

I We can write the brading matrices in CFE form as

XA = BX , (2)

where X = AB.
I Adding A to both sides of (2), we obtain (X + I)A = BX +A.
I Solving for A on the left side of the equation yields our fixed point iteration

method
A = (X + I)−1(BX +A). (3)

Must ensure that (X + I) remains invertible during the iteration.
I We could rewrite (3) as

A = (X + cI)−1(BX + cA), (4)

and for large enough values of c, the diagonal dominance of (X + cI) will
guarantee invertibility.
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Results Matrix Braids

I Example of using a table and turning of the background.

n Vn/cn Vn/Cn Sn Comments

1 2.0000 1.000000 2.0000 Since S1 =
2π 1/2

Γ(1/2) r 1−1 and Γ(1/2) = π1/2

2 3.1416 0.785398 6.2832

3 4.1888 0.523599 12.566

4 4.9348 0.308425 19.739

5 5.2638 0.164493 26.319 Maximum Vn. Holds the most n-cubes.

6 5.1677 0.080746 31.006

7 4.7248 0.036912 33.074 Maximum Sn at n = 7.257 . . ..
8 4.0587 0.015854 32.497

9 3.2985 0.0064424 29.687

Note that Vn/Cn→ 0, i.e., spheres are vanishingly small inside of cubes in Rn for large n.
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Concentric spheres Matrix Braids
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Figure: Plot of Gamma function, Γ(x), showing factorials, Γ(x) = (n−1)! for x = 1,2, . . ..
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How we wrote these slides Matrix Braids

We used Beamer, a version of LATEX that is highly optimized to produce quality presentation slides.
Interested? Consider MATH 2212 Software Tools for Math, along with some self-help research tools.
Note that we can invoke actions, such as view the jpg file that is the background for this page.

Back to Elementary Considerations, pg.8
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Thank You Matrix Braids

The Department of Mathematics
and Physics at

The University of New Haven
http://math.newhaven.edu

JKolibal@newhaven.edu
http://math.newhaven.edu/kolibal
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